Fill the missing values (NaN to 0)
Get index and locate
godarda@gd:~$ python3
...
>>> import pandas as pd
>>> df=pd.read_csv("/home/godarda/gd.csv")
>>> df
account_no name city dob bank amount
0 25622348989 James Moore Phoenix 1985-05-26 Barclays 5000
1 25622348990 Donald Taylor Irvine 1990-08-20 Citi 7000
2 25622348991 Edward Parkar Irvine 1994-01-29 ICICI 95000
3 25622348992 Ryan Bakshi Mumbai 1982-01-14 Citi 50000
4 25622348993 Marie Peters Ribe 1967-01-05 DZBank 12250
5 25622348994 Aanya Delhi 1975-08-18 SBI 105000
6 25622348995 James Moore NaN 1978-06-26 Citi 97800
>>> df.fillna(0)
account_no name city dob bank amount
0 25622348989 James Moore Phoenix 1985-05-26 Barclays 5000
1 25622348990 Donald Taylor Irvine 1990-08-20 Citi 7000
2 25622348991 Edward Parkar Irvine 1994-01-29 ICICI 95000
3 25622348992 Ryan Bakshi Mumbai 1982-01-14 Citi 50000
4 25622348993 Marie Peters Ribe 1967-01-05 DZBank 12250
5 25622348994 Aanya Delhi 1975-08-18 SBI 105000
6 25622348995 James Moore 0 1978-06-26 Citi 97800
Fill actual value instead of 0 (NaN to string)
>>> df.fillna({'city':'City Missing'})
account_no name city dob bank amount
0 25622348989 James Moore Phoenix 1985-05-26 Barclays 5000
1 25622348990 Donald Taylor Irvine 1990-08-20 Citi 7000
2 25622348991 Edward Parkar Irvine 1994-01-29 ICICI 95000
3 25622348992 Ryan Bakshi Mumbai 1982-01-14 Citi 50000
4 25622348993 Marie Peters Ribe 1967-01-05 DZBank 12250
5 25622348994 Aanya Delhi 1975-08-18 SBI 105000
6 25622348995 James Moore City Missing 1978-06-26 Citi 97800
Drop a missing value row
>>> df.dropna()
account_no name city dob bank amount
0 25622348989 James Moore Phoenix 1985-05-26 Barclays 5000
1 25622348990 Donald Taylor Irvine 1990-08-20 Citi 7000
2 25622348991 Edward Parkar Irvine 1994-01-29 ICICI 95000
3 25622348992 Ryan Bakshi Mumbai 1982-01-14 Citi 50000
4 25622348993 Marie Peters Ribe 1967-01-05 DZBank 12250
5 25622348994 Aanya Delhi 1975-08-18 SBI 105000
Comments and Reactions
What Next?
Data Visualization
Advertisement